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| ntroduction

The optimization problem in IMRT can usually be describedirading the fluence vectof > 0 that deliver
the dose vectod = H f as close as possible to the prescribed a@ism the PTV, while fulfilling as much as
possible imposed dose-volume and dose-maximum constramthis problem the number and positions of the
photon beams are fixed a priori. Each beam is divided in a nuwfoedjacent beamletsf is a vector which
elements are the intensity of these beamléts a vector which elements are the resulting dose in each voxi
of the phantom.H Is a matrix composed by the dose distribution vectors of gentlets. The figure below
offers the flow chart overall optimization process:
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In the inner optimization the fluence vectpis computed that minimizes a quadratic objective functigf) of
simple dose objectivag), for the defined structuras In the outer optimization the voxel dependent factprs
are adapted, in a way that the voxélsarticipating the most to the violation of some dose-volwoestraints
get more importance in the inner optimization.

|nner optimization

The inner optimization uses the following quadratic ohyectunction:

s(F) = & HE — d)TRu(Hf — db) + w(Mf)T(MF) (1)

The first term is the dose objective function whefeare vectors which elements equal the dose objedfjve
for the voxels in volume. d! equals the prescribed dose if the structuis a target volume andlif structure
v IS arisk organ.

The¢, are predefined structure-wide importance factors as&acwth each structure. Ther, are diagonal
matrices. The diagonal elemenis, of 7, are the voxel importance factors associated to each vadetach
structurev.

The second term is a smoothing term which works in two way$éosblution of the problem: as a smooth-
Ing filter to avoid unachievable frequencies in the fluenoe, @ a small additional term which facilitates the
calculation of the optimal solution of the problei¥. is the smoothing matrix angla scalar smoothing factor.

Equation 1 can written in a more compact form:

s(f) = 5fTAf + bt @)
where:

A=H'OH + kS
ol
C = Z §’U(d€> ﬁvd}g
v

Smoothing term

For the smoothing term we use the discrete Laplace opetatorthe two dimensional fluence (i.e. the second
derivative):
Af=Mf (4)

The first goal of the smoothing term is to get a solution vegttmat represent a fluence that is smooth enoug!
to be realized in the pratice.

The second goal is to improve the condition of the mattix Without the smoothing term the condition of
matrix A varies usually betweer!'® and infinity. With the smoothing term and= 10~2 max &, it is usually

of the order ofl0°. This improvement in the condition of is in general an advantage for the calculation time
and the precision of the solution. In our case it is of esakmtiportance because it allows to use an algorithm
that is faster and more accurate than the gradient methods.

Minimization of the objective function

The matrixA will now be written as:
A=H'OH + kS (5)

where:

v (6)

() Is the only matrix which changes at each iteration of the roop&imization, thus it is important to optimize
the calculation of the produdi{ QH. An algorithm has been designed which takes advantagetthanatrix
H is sparse (usually filled fas to 20% with nonzero elements) and th@tis a diagonal matrix. In the calcu-

lation of the product? @, the multiplication withQ is performed while transponing. The result is then

multiplied by H. This approach has two advantages: it is not necessaryr® /&to, which is very large, for
speeding-up the calculation, and the mafiix Q) is more sparse thaH (sinceq is usually sparse too) [1,2].

Another part in the speed improvement is achieved by nogusigradient method but a new algorithm called
BOXCQP [3]. BOXCQP solves convex quadratic problems with@e bounds, e.gf > 0. It claims to be up

to 30 times faster than other algorithms for quadratic mogning. Another advantage is that BOXCQP finds
the exact minimum and does not need any termination crteraund it is also simple to implement.

Outer optimization

The outer optimization is used to meet the objectives in tefrmoverage of the PTV, DVHs and maximum
doses. For the PTY00% of the volume must receive a dose higher thay of the prescribed dose, and the
dose must not exceed a given maximum value. For the orgaskatheir dose volume contraint must not be
exceeded, i.eV(d, d5) < V¢, and the dose must not exceed given maximal values. Thesdearicrease the
voxel coefficienty; ,, of the voxels: that participate to the violation of the contraints for sturev. There are
several strategies possible; until now the most simple @segiven the best results. This simple strategy is tc
increase after each inner optimization the of the voxels which dose exceéflin the of dose-volume or dose
maximum constraints in the organ at risk, and which doseak@¢& of d¥ in the PTV.

Results

The algorithm has been tested with success on differenscagathetic phantom, prostate, head-and-neck, an
oesophagus. Here the case of the irradiation of an oesophaguor is presented. The plan used 5 equiangula
beams. The optimization needed 45 iterations of the outema@ation to reach the dose objectives, and took
about7.5 minutes on a Intel XeoR.2 G H z with Linux as operating system.

constraints realised dose statistics

structure d° (Gy) V(%) max(Gy) V (%) max(Gy)mean(Gy)
PTV 52.2 100.0 85.0 100.0 58.0 55.0
body 20.0 20.0 60.0 15.0 58.4 9.1
lungs 18.0 30.0 58.0 29.7 57.6 16.0
myelum 45.0 0.0 45.0 0.0 38.6 13.7
mediastinum 30.0 35.0 60.0 344 57.1 26.4

Dose objectives used in the calculation and the results pféscribed dose in the PTV is 5.
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This figure shows the calculated dose distribution in theestentral to the PTV.
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This figure shows the DVH curves of the different structures.

Conclusions

With this work we have shown that it is possible to solve thebpem of dose optimization with dose-volume

constraints by using the mini-mization of a quadratic sdarection with prescribed doses in PTVs and zero
dose levels in the organ at risk, combined with an automalap&ation of voxel-based parameters. This ap-
proach asks for a fast solution of the minimization of thedra#ic function. This has be done by using a new
algorithm: BOXCQP, and by using calculation techniquessioairse matrices. Also the introduction of the
smoothing term plays an important role in the minimizatiéthe score function.
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