
Automated adjustment of voxel-dependent importance factors in inverse

planning

1 Introduction

For IMRT, the goal is to generate fluence maps for each beam such that the dose distribution satisfies certain
constraints, usually dose-volume or maximum-dose. Traditionally, volumes of interest are weighted against
each other by use of volume-wide importance factors. By assigning the PTV a higher importance than the
organs at risk, the objective of giving the PTV its prescribed dose outweighs the desired zero dose in the OAR’s.
However, the solution heavily depends on the choice of these volume-wide importance factors. Generally, manual
adaptation is a lengthy trial-and-error process.

A new approach is the use of voxel-dependent importance factors [1]. This provides more local control over
the dose distribution. In this paper, an inverse planning algorithm is presented that is based on voxel-dependent
importance factors that are automatically adapted. The constraints are prioritized to ensure correct PTV dosage
and maximum sparing of important OAR’s, at the expense of less important OAR’s. With this approach it is
also possible to obtain highly conformal dose distributions.

2 Materials and methods

To meet the imposed constraints a two-step algorithm is used. In the first step beam profiles are optimized
according to a quadratic objective function, with the condition that the fluence is non-negative. In the second
step, the result is evaluated and according to violated dose-volume or maximum-dose constraints, the voxel-
coefficients for the objective function are adapted, and the first step is run again. This process is repeated until
all the constraints are satisfied, or for a maximum number of iterations.

2.1 Objective function

The relation between the dose and the fluence (represented as a vector of beamlets) is linear and can be written
as a matrix-vector product d = Hf . The matrix H is the dose deposition matrix composed of the distribution
vectors of all beamlets and is stored as a sparse matrix to reduce memory usage and increase speed when
computing matrix-vector or matrix-matrix products. The quadratic objective function used in the beam profile
optimization can be written as follows [2]:

s(f) =
∑

v∈V

ξv(Hf − dp
v)

T η̃v(Hf − dp
v) + κ(Mf)T (Mf), f ≥ 0. (1)

This function consists of two terms: a dose objective term and a smoothing term. The first term records for
each voxel in a volume v the difference between the attainable dose Hf and the prescribed dose d

p
v, which is

kept constant for all voxels in a certain volume, usually the prescribed dose for the PTV, and 0 for the organs at
risk. The diagonal matrix η̃v contains the voxel-dependent importance factors. The different volumes of interest
(representing structures) v ∈ V are weighted by volume-wide importance factors ξv.

The second term is the smoothing term, regulated by a smoothing factor κ. This term encourages the fluence
to be smooth. The product Mf is a discretization of the Laplacian (second derivative) of the fluence f .

2.2 Beam profile optimization

Equation 1 can be written in canonical form:

s(f) =
1

2
fTAf + fT b + c, (2)

where:
A = HT QH + κS, b = HT q, c =

∑

v

ξv(d
p
v)

T η̃vd
p
v , (3)

Q = 2
∑

v

ξvη̃v, S = 2MT M, q = −2
∑

v

ξvη̃vd
p
v . (4)

The advantage of this formulation is that the calculation of the score requires only a few matrix-vector
computations and that there are many methods available for minimizing this function. The most time consuming
computation is that of the first term of matrix A. We have developed an efficient sparse matrix algorithm to
compute Z = HT Q by only transposing the rows of H if the corresponding element on the diagonal of Q is
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Figure 1: Flow diagram of the two-step voxel-coefficients optimization.

nonzero. The number of computations scales linearly with the number of non-zero elements on the diagonal of
Q.

An IMRT problem using an objective function similar to equation 1 without the smoothing term is usually ill-
posed because it is possible to obtain nearly identical dose distributions with different fluence maps [3]. Without
precautions the resulting fluence will contain high frequencies due to the numerical noise in the problem. The
numerical degeneracy of a matrix depends on the condition number, which is the ratio between the largest and
smallest eigenvalue. By adding a well-conditioned matrix (such as the identity matrix or Laplacian) the smallest
eigenvalue increases, so the condition decreases, which is favorable.

The Hessian (matrix A in equation 2) is positive definite, so minimizing s(f) under the condition that f ≥ 0
can be solved by any convex quadratic minimization algorithm. Our algorithm of choice is BOXCQP [4] because
this algorithm is easy to implement and faster than most quadratic programming algorithms. Furthermore it
uses the Cholesky decomposition which is suitable for parallellization on SMP (symmetric multiprocessors)
computers. The average speed-up when using 2 CPUs is over 90%.

2.3 Optimization of the voxel-coefficients

After the first beam profile optimization, the result is evaluated and the the voxel-dependent importance factors
ηv (the voxel-coefficients) are adapted according to the violated constraints. A flow diagram of this algorithm
is depicted in figure 1.

The constraints are divided into different constraint sets Ck, where k is a priority index. For example, the
minimum PTV dose is usually put into C1, because irradiating the PTV is the most important objective. The
maximum dose in the PTV will usually be in C2, and the organs at risk in C3, C4, . . . (see table 1). In the
second step of the optimization, the voxel-coefficients ηv are adapted only for the constraints in the first set Ck

in which one or more constraints are violated.

volume type objective critical Ck

PTV DV 100% 42.42 Gy 1
PTV Max 47.78 Gy 2
Body Max 47.78 Gy 2
Bowel DV 25% 35 Gy 3
Bladder DV 10% 40 Gy 3
Colon DV 8% 40 Gy 3
Bowel DV 37% 20 Gy 4
Bladder DV 26% 20 Gy 4
Colon DV 14% 20 Gy 4
Body DV 16% 30 Gy 5

Table 1: Constraint list for the rectum case with a prescribed dose of 44.65 Gy. Five constraint sets are used.
The smaller k, the higher is the importance of meeting that particular constraint.
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To select the voxels of which the coefficient is adapted (i.e. increased), the dose of the particular volume
is sorted in ascending order, see figure 2 [5]. For a maximum-dose constraint violation, a subset of the voxels
exceeding the maximum-dose are adapted from high-dose to low-dose.

A dose-volume constraint requires a different approach. To lower a dose-volume value the voxels exceeding
the critical dose are to be minimized. This can be achieved by increasing the voxel-coefficient of the voxels
whose dose just exceeds the critical dose. This is depicted in the right part of figure 2 and visualised in figure 3.
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Figure 2: One dimensional example of the selection of voxels for adaptation of the (voxel-dependent) importance
factor. The dose distribution (left) is sorted in ascending order (right). The first voxel exceeding the critical
dose Dc is 16. For an OAR, the coefficient of voxels 16, 5, 6, . . . are adapted. For a PTV voxels 4, 17, 3, . . .. If the
coefficients are adapted because of a maximum-dose constraint violation, the voxels 10, 11, 9, . . . are adapted.

One of the problems with this two-step approach is that the adaption of the voxels-coefficients does not have
a direct relation to the criteria. It is not possible to predict the result of increasing the coefficient for a single
voxel. For the maximum-dose voxel-adaption algorithm, experience learned that increasing the coefficient of
the top 20% of the voxels violating the maximum-dose constraint by 0.3 proofs to be a good balance between
decreasing the maximum-dose in the volume and over-emphasizing the voxels. For the dose-volume voxel-
adaption algorithm, the coefficient of the first 20 voxels violating the constraint is increased by 1, unless there
are less voxels violating this constraint. These settings result in a smooth convergence.

3 Results and discussion

The algorithm is demonstrated for a rectum cancer case. The prescribed dose is 44.65 Gy (19 fractrions of
2.35 Gy) and the patient is treated with four 18 MV beams and one 6 MV PA beam. 2297 beamlets of size
0.5 × 1.0 cm are used and 234 479 voxels of 0.4 × 0.4 × 0.5 cm are considered in the patient volume. The
volume-wide importance factors (see equation 1) for the PTV, bowel, bladder, colon and body are chosen 100,
10, 5, 5 and 1 respectively.
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Figure 3: 2D example of voxel selection for voxel-coefficient adaption. The isodose line belongs to the critical
dose Dc for the OAR. To reduce the amount of voxels exceeding the critical dose, the value of the voxel-
coefficients of the voxels in the shaded area is increased. The result is that the isodose line moves closer to the
PTV.
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The constraints used are presented in table 1. Irradiating the tumour is the most important objective, so
the constraint for the PTV is placed in the first constraint set (100% of the PTV receives a dose of 95% of the
prescribed dose). The maximum PTV dose is 107% of the prescribed dose and is placed in the second constraint
set, together with the maximum allowable dose in the body tissue (excluding PTV and OAR’s). After the
constraints in the first two sets are met, the algorithm tries to meet the constraints in the third set. This set
contains the high dose constraints, since high dose in a volume has a larger impact on biological damage than a
lower dose. The fourth constraint set contains constraints for the lower dose range. The reason that two DVH
constraints are used for the OAR’s is because the volumes are large. It turned out to be not efficient to only
lower the high dose constraints: a lot could be gained in the low dose range as well. The last constraint on the
body is to enforce more conformity and removes unnecessary dose in the unspecified tissue.

The optimization required 41 minutes for 273 iterations on a 2.4 GHz Intel Core2 processor. The results are
presented in figure 4. The dose is highly conformal and 100% of the PTV is irradiated within the 95% − 107%
dose constraint.
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Figure 4: Left figure shows location of the volumes and the 80%, 90% and 95% isodose lines. The beams are
placed at 85, 155, 180, 205 and 275 degrees. Right figure shows the dose-volume historgram.

One of the difficulties in inverse treatment planning is the choice of the constraints and the corresponding
importance factors. If possible, an algorithm will provide a solution which satisfies the constraints, but not
necessarily better. A lot of human interaction would be required to find the most optimal constraints. This is
a result of the multi-criteria origin of the problem. In an upcoming paper we will present an algorithm that
automatically finds the most optimal (i.e. Pareto optimal) constraints for an inverse planning process.

The time required for this optimization could be further reduced by using a parallel implementation, as
mentioned in section 2.2.

4 Conclusion

In this paper we have presented an algorithm that effectively adapts voxel-dependent importance factors, used
in combination with a quadratic objective function. This implemented two-step approach is capable of achieving
highly conformal dose distributions.
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