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Multi-criteria optimisation and

decision-making in radiotherapy

Sebastiaan Breedveld & Rens van Haveren

When treating patients with radiotherapy, healthy organs may be
damaged, resulting in loss of functionality. The distribution of the dose
over the different organs is modelled as a multi-criteria optimisation
problem. As there is not a single optimal (or “golden”) solution,

decision-making is used to find a clinically acceptable solution.

Radiotherapy (radiation therapy) is used in treating =~ 50% of cancer pa-
tients. Due to irradiation of healthy organs surrounding the tumour, severe
side-effects may be induced, impacting the patient’s quality-of-life. For exam-
ple, reduced functionality of salivary glands may result in dry-mouth syndrome.
This urges the patient to drink some water every half-an-hour (day and night).
Damaged swallowing muscles impairs the consumption of solid food, and limits
the patient to eating mashed food, or using a probe.

It goes without saying that each complication has a significant impact on the
quality-of-life of the patient and it is thus of utmost importance to reduce the
probability of developing treatment-induced complications. The dose levels
for which complications occur are not fixed, but differ between patients.

Also, different organs have different radiosensitivity and it is therefore impor-
tant to consider the dose to each organ separately. The dose to the different
organs is correlated, resulting that sparing one completely may result in the
inability to spare the others (see figure 1). This means that a trade-off has to
be made between the doses to the different organs. A typical trade-off could
be between the dose to the salivary glands and the dose to the swallowing
muscles, where a balance has to be found between dry-mouth problems and
swallowing problems. A real multi-criteria problem in radiotherapy typically
consists of 20-30 criteria.

We use techniques from multi-criteria optimisation and decision-making
(MCDM), subfields of Operational Research, to find clinically acceptable treat-
ment plans, and to automate the decision-making process.
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Figure 1: Left: Pareto front. A non-Pareto optimal solution (purple) can be
improved in one or more criteria, until it is on the Pareto front. The black dots
at the end of the curve are the extremities, i.e. full minimisation of one
criterion. Middle and right: Pareto optimal treatment plans with different
trade-offs. Cyan = mouth, yellow = a swallowing muscle, blue/green = salivary
glands. Colourwash: More red (hotter) = higher dose (damage).
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Multi-criteria optimisation
A multi-criteria optimisation problem is formulated as follows:
minimise [f1i(x), f2(z), ..., fn(x)]
subject to g(z) <0
where f;(x) are nonlinear real-valued functions, g(x) is a set of nonlinear
constraints and @ € R the decision variables. The goal of multi-criteria
optimisation is to find a balance between the criteria [f1, f2,..., fn]. An
important concept is Pareto-optimality. A solution [f}, f5,..., fx] is Pareto-
optimal if an improvement for one criterion results in a deterioration for at
least one of the others, i.e. there is no gain without loss. This concept is
visualised in figure 1 for n = 2.

However, there is not a “golden” solution. What is an acceptable trade-off is
determined by the long-term experience and insights of the physician (medical
doctor). It is clear that there is not a sane trade-off near the extremities, as
there is a huge gain for one with only a slight deterioration of the other. But
what makes a clinically acceptable trade-off is less well defined. There are dif-
ferent approaches to handle this decision-making problem. One is to give full
control to the physician, and let him/her determine the most favourable solu-
tion. Another approach is to formalise the decision-making process, allowing
automated decision-making. The challenge of automated decision-making is
to find a general configuration which results in clinically acceptable plans for
different patients (within the same treatment group).

Pareto front navigation

By using Pareto front navigation, the physician (operator) can freely explore

the trade-offs between different criteria (see [3] for an interactive example).

This way, the different doses belonging to the different solutions are directly

visualised. Fora bicriteria problem, the Pareto front can be spanned by solving:
minimise afi(z) + (1 — a)f2(x)

subject to g(z) <0

for weights a € [0, 1]. Each value of « gives a unique Pareto-optimal solution.

There are some practical problems, resulting from the curse of dimensionality.
A uniform distribution of « does not necessarily result in a uniform distribution
of points on the Pareto front, and doing this for n > 3 is not straightforward.
Decision-making is also problematic: humans are in general capable of con-
sidering up to 5 criteria simultaneously, so it is questionable if the operator
will always reach an optimal decision, or will reach the same solution a second
time (reproducibility).

Sequential e-constraint programming

Radiotherapy treatment plan optimisation requires consistent, reproducible
and fast decision-making (for several reasons). The idea is to automate
decision-making by mimicking the human decision-maker’s decision pattern.
This is possible by constructing a prioritised list with goal values to reach for
each criterion. An example is given in table 1.



Table 1: Constraints and criteria

Constraints
Name Type Limit
Tumour minimum  43.7 Gy
Nerves maximum 45 Gy

Criteria

Priority  Volume Type Goal
1 Salivary Glands minimise 40 Gy
2 Swallowing Muscles  minimise 50 Gy
3 Salivary Glands minimise 20 Gy
4 Swallowing Muscles  minimise 40 Gy
5  Salivary Glands minimise 0 Gy
6 Swallowing Muscles  minimise 0 Gy

In this list, there are 2 hard constraints and 6 prioritised steps which are
processed in sequential order. The idea is that in each step, the criterion is
minimised up to, but not lower than the given Goal. This is to prevent that
the solution is steered to one of the extremities, severely limiting the sparing
of other criteria. This criterion is then added as a constraint to the problem.
Formally, the steps taken are:
minimise fi(z)
subject to g(z) <0
Depending on the result f;(z*), the new bound is chosen according to the
following rule:

o {bz fi(@*)6 < b;
;=
Ji(x*)o  fi(z*)d > b;
where b; is the Goal for f; (table 1) and § is a slight relaxation to create some
space for the subsequent optimisations, usually set to 1.03 (3%). This step

leads to more favourable trade-offs by steering the solution away from steep
parts of the Pareto front.

The next optimisation optimises fa, keeping f1 constrained:

minimise fa(z)
subject to g(z) <0
filz) <ea

and so on.

The list in table 1 describes a balanced search between the 2 criteria, similar to
a manual search. The advantage is that many criteria can be included, and that
the search is deterministic. The challenge is to find a uniform configuration
(list) which results in clinically acceptable plans for each patient.

Lexicographic Reference Point Method

A disadvantage of the previous method is that it requires many optimisations.
Essentially, this method follows a path through the criterion-space (while
obeying the imposed hard constraints, e.g. as in table 1). The idea of the
Lexicographic Reference Point Method (LRPM) is to optimise along this path,
resulting in a single optimisation problem. This implies shorter calculation
times, in particular when the list contains many criteria and priorities. The
idea of the LRPM is to express the preference structure through reference points.
A reference point is a vector in which each coordinate represents a goal value
for one of the criteria. These goal values are equally important to attain, e.g.
the reference point (f1, f2) = (20,40) indicates that attaining 20 for fi is
as important as attaining 40 for f2. However, different reference points have
different priorities: the first priority is to attain the worst reference point. If
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feasible, the focus is on attaining the second-worst reference point. This pro-
cess continues until no improvements are possible. Intuitively, the worst-case
scenario (first reference point) is steered in a prioritised manner towards the
ideal scenario (last reference point). The flexibility of using multiple reference
points allows us to prioritise the criteria, e.g. see figure 2: in between every
pair of subsequent reference points, the focus alternates on decreasing either
f1 or fa. This approach can be extended for an the general case (n criteria) in
which one can specify a finite number of reference points that strictly decrease
coordinatewise.

The next step is to design a reference path: a parametric curve through the
criterion space that connects the reference points so that the parametric equa-
tions are strictly decreasing. Then, a single optimisation problem is formed [2]
to process all objectives and their priorities. Intuitively, the reference path is
followed until it intersects with the Pareto front. This intersection is then the
returned Pareto-optimal solution.

To apply the LRPM with a uniform configuration for a group of patients, some
modifications are needed. The intersection of the reference path and the Pareto
front may occur on a steep part of the Pareto front (representing an unde-
sired trade-off) for some patients, see figure 2. To overcome this issue, we
need a mechanism that excludes the selection of solutions near the extremi-
ties. Hereto, trade-off curves are modelled into the LRPM: without the trade-off
curves, the red plans are generated while the clinically favourable plans (green
plans) are generated with the trade-off curves. In conclusion, even though
the clinically favourable plans seem scattered and unstructured, there is an
underlying preference structure that can be captured by the LRPM using a uni-
form configuration (reference points and trade-off curves). This allows us to
apply the LRPM with fixed parameters per treatment site.
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Figure 2: The effect of adding trade-off curves. The black lines are the Pareto
fronts for three different patients and the green/red dots represent the
generated plans with/without trade-off curves.

Automated Radiotherapy Treatment Planning

The ability to automate decision-making allows to cope with other complex
parts of the problem, resulting in fully automated generation of radiotherapy
treatment plans. The quality of these plans are in general equal, and often
much better than existing clinical practise. Currently, these methods are in
clinical use in the Erasmus University Medical Center in Rotterdam.
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